

M 408L Practice Exam 2 Solutions

1. The integral diverges; taking the antiderivative of $\frac{1}{x^5}$ gives us $-\frac{1}{4x^4}$, and $\lim_{t \rightarrow 0} -\frac{1}{4t^4} = -\infty$.
2. The sequence converges to 0; split the fraction into $\frac{(-1)^{n+1} \cos(n)}{2\pi n^2} + \frac{1}{2\pi n}$. The numerator on the first term is bounded between -1 and 1 , so both fractions will converge to 0 when you make n very large.
3. $\frac{25}{36} \ln|x-5| + \frac{11}{36} \ln|x+1| + \frac{1}{6(x+1)} + C$; using partial fraction decomposition should give you the form $\frac{A}{x-5} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$. Set this equal to the original integrand, then multiply both sides by $(x-5)(x+1)^2$

$$x^2 = A(x+1)^2 + B(x-5)(x+1) + C(x-5).$$

To find C , it is easiest to just plug in -1 for x . To find A and B , expand out the right hand side, subtract over the x^2 , and factor to get

$$0 = (A+B-1)x^2 + (2A-4B+C)x + (A-5B-5C).$$

This equation is true for *every* value of x , so it must follow that all the coefficients are 0. In other words:

$$\begin{aligned} A + B - 1 &= 0, \\ 2A - 4B + C &= 0, \\ A - 5B - 5C &= 0. \end{aligned}$$

You will only need to use the first two equations to find what A and B are since we already know the value of C . Once you have the constants, the integral is straightforward – use \ln for the first two terms, and u -sub with $u = x+1$ for the last term.

4. $(e^3 - 1)(e^2 + 1) = e^5 + e^3 - e^2 - 1$; from the region given, your integral should look like

$$\int_0^2 \int_0^3 ye^{x+y} dx dy.$$

The integral with respect to x is straightforward, but for the integral with respect to y , you will need to use integration by parts.

5. $\frac{1}{2} \ln(2)$; whenever we are presented with an integral with a lot of e^x 's present, *it is never a bad idea to take $u = e^x$* . So, take $u = e^x$, so that $du = e^x dx = u dx$. This turns our original integral into

$$\int_2^5 \frac{1}{u^2 - 1} du$$

since $e^{2x} = (e^x)^2 = u^2$. From here, factor the denominator and use partial fractions.

6. The integral converges; get in the habit of recognizing that \sin and \cos are always bounded between -1 and 1 . In this case, the numerator is always smaller than 1 , so we can compare with $\int_3^\infty \frac{1}{x^5} dx$. This improper integral can now be easily computed.
7. $\frac{1}{2} - \frac{13}{3} \ln(2)$; The numerator has a power that is greater than or equal to the denominator, so we should start by doing polynomial long division. This will make the integrand equal to $x + 1 + \frac{x+7}{x^2+x-2}$. The first two terms are easy to integrate, and for the third term, notice that the denominator factors into $(x+2)(x-1)$; from here, use partial fractions.
8. 0; the curve $x = y^2$ is a parabola that's "turned over". Graphing out the region will give us the integral

$$\int_{-2}^2 \int_{y^2}^4 3(x^2 + y^2) dx dy.$$

When you work this integral out, you (miraculously) get 0.

9. $f_{xy}(x, y) = f_{yx}(x, y) = \frac{2x}{y} + 2 \ln(y) + 2$; the product rule will need to be used at some point since you have a function of y (namely, $(x+y)$) multiplied by $\ln(y)$. Note that f_{xy} and f_{yx} are the same by Clairaut's theorem.
10. The integral converges, and its value is 4; since we are given an absolute value, we can split the integral into two easier integrals:

$$\int_{-1}^1 \frac{1}{\sqrt{|x|}} = \int_{-1}^0 \frac{1}{\sqrt{-x}} dx + \int_0^1 \frac{1}{\sqrt{x}} dx.$$

The antiderivative of $\frac{1}{\sqrt{x}}$ is $2\sqrt{x}$. Hence, the limit at 0 will exist, so our integral converges. In this case, we can directly compute that each integral evaluates to 2, so they add up to 4.

11. $\left(\frac{6}{7}\right)^{-1}$; since we are explicitly given what the domain is, we can write the integral as

$$\int_1^2 \int_0^{\sqrt{y}} xy dx dy$$

(note that we switch the dx and dy since it is easier to integrate with respect to x first). From here, apply power rule to work out the integral.

12. The sequence converges to 1; First, look at the argument inside the sin function. By comparing the powers of the numerator and denominator, we see that both have 2 as their highest degree. Hence, to find the limit of the argument, we just divide the coefficients, meaning the argument inside sin will converge to $-\frac{3\pi}{2}$ as $n \rightarrow \infty$. Since sin is continuous, we can “plug in” the limit into sin to get the final answer. In this case, $\sin\left(-\frac{3\pi}{2}\right) = 1$.

13. The sequence diverges; compare with the function $f(x) = \frac{x^2}{\ln(x+1)}$. We can use L'Hôpital's rule to find out that $\lim_{x \rightarrow \infty} f(x) = \infty$, meaning $f(x)$ diverges. This means our sequence must also diverge (this fact comes from a theorem in the notes).
14. $\frac{3}{22}$; we have n appearing in an exponent, so we should manipulate the series to look like a geometric series. Using some exponent properties, the series we are given is the same as

$$\sum_{n=2}^{\infty} \left(\frac{3}{25}\right)^{n-1}.$$

This *almost* looks like a geometric series, but we need the summation to start at $n = 1$. We can achieve this using the classic “add and subtract the same number” trick:

$$\sum_{n=2}^{\infty} \left(\frac{3}{25}\right)^{n-1} = \left(\sum_{n=1}^{\infty} \left(\frac{3}{25}\right)^{n-1}\right) - 1.$$

All we did above was add the term corresponding to $n = 1$, then subtract it afterward. From here, we have $r = \frac{3}{25}$, which has absolute value less than 1, so this series converges. In particular, the sum is

$$\left(\sum_{n=1}^{\infty} \left(\frac{3}{25}\right)^{n-1}\right) - 1 = \frac{1}{1 - \frac{3}{25}} - 1 = \frac{25}{22} - 1 = \boxed{\frac{3}{22}}.$$

15. $\frac{11}{24}$; draw out the region that is described. You will find that you get a triangle, where the bottom side is given by the equation $y = 1 - x$. So, we set up the integral

$$\int_0^1 \int_{1-x}^1 (x^2 + xy) dy dx.$$

Use power rule to evaluate this integral.

16. If we can show that our original series is larger than a series that diverges, then our original series will diverge as well (intuition: if something is greater than ∞ , then it must be ∞ too). In this case,

$$\frac{3n}{n^2 - 5} \geq \frac{3n}{n^2} = \frac{3}{n} \geq \frac{1}{n}.$$

It follows that

$$\sum_{n=1}^{\infty} \frac{3n}{n^2 - 5} \geq \sum_{n=1}^{\infty} \frac{1}{n}.$$

We are told that the series on the right diverges, so the series on the left must also diverge by the comparison test.

17. The integral diverges; since we are integrating over x values that are at least 1, we have $x + 1 \leq 2x$. Also, $\ln(x)$ is positive if we plug in anything greater than 1, so

$$\frac{\ln(x)}{x+1} \geq \frac{\ln(x)}{2x} = \frac{1}{2} \cdot \frac{\ln(x)}{x}.$$

From here, we can directly get the antiderivative of this function – it is $\frac{1}{4}(\ln(x))^2$. But

now, $\lim_{t \rightarrow \infty} \frac{1}{4}(\ln(t^2))^2 = \infty$, so our original integral diverges by the comparison test.

18. $\int_2^5 \int_0^{5-y} 6 \sin(e^{xy}) dx dy$; Start by sketching the bounds of integration to find out what our region looks like. You should get a right triangle – the bottom boundary is the line $y = 2$, the left boundary is the line $x = 0$, and the third side is the diagonal line $y = 5 - x$. Since we are switching the order such that x comes first, we need to think in terms of “left and right” first. In this case, our left boundary is $x = 0$, and our right boundary is the line $y = 5 - x$. We need to solve this equation for x , so the right boundary is really $x = 5 - y$. Likewise, our bounds of integration for y are found by looking at the lowest and highest y -values in our region; in this case, they are 2 and 5 respectively.

19. At point P , we have $f_x < 0$ and $f_y < 0$. At point Q , we have $f_x = 0$ and $f_y < 0$; start at P and take a *very* tiny step directly to the right to get f_x . In this case, at point P , if we step to the right, we are heading towards contours with lower values (in particular, we are moving towards the -2 contour, which is smaller than we are currently at). We get f_y similarly; start at P , and move a *very* small amount upwards. We’ll notice that we are moving towards contours with smaller values. For point Q , we must notice that the contour plot looks “horizontally flat” at point Q . In this case, if we take a tiny step to the right, we actually stay on our original contour, meaning the value of f doesn’t change when we make a tiny step to the right. This is the same as saying $f_x = 0$. However, f_y is negative, since moving up a little bit will move us towards a contour with a lower value.