
UT Austin Applied I Prelim Solutions

Justin Le

This document contains solutions to the Applied I prelim problems from August
2015 to August 2025. Here, you will also find common strategies and important
things to know for the prelim, along with proofs from the textbook that may
show up on future prelims. The book we use is Functional Analysis for the
Applied Mathematician by Todd Arbogast and Jerry Bona.

Acronyms

• PUB: Principle of Uniform Boundedness (also called the Uniform Bound-
edness Principle)

• HBT: Hahn-Banach Theorem (this acronym will never be used to refer to
the Heine-Borel Theorem)

• OMT: Open Mapping Theorem

• CGT: Closed Graph Theorem

• BAT: Banach-Alaoglu Theorem

• RRT: Riesz Representation Theorem

• ST(c): Spectral Theorem for Compact Operators:

• ST(sa): Spectral Theorem for Self-Adjoint Operators

• ST(csa): Spectral Theorem for Compact, Self-Adjoint Operators

• MCT: Monotone Convergence Theorem (the one for integrals, not se-
quences of real numbers)

• DCT: Dominated Convergence Theorem

General Advice

“Primers” in Multi-Part Problems

If a part (a) tells you to state or prove a well-known result from the book, it is
nearly guaranteed that you are expected to use it on part (b) (for example, the
writers of these exams love asking you to state PUB or CGT, then having you
use it on the next part).
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Showing Continuity

If you are being asked to show continuity of an operator between Banach spaces,
consider using CGT (do not use this if the domain or codomain is not complete).
Typically, when showing something is continuous, an analyst follows these two
steps:

1. Assume xn → x.

2. Show that Txn → Tx.

When using the closed graph theorem, we want to verify that Graph(T ) is closed.
This means assuming (xn, Txn) is a sequence in Graph(T ) converging to (x, y),
then showing that (x, y) ∈ Graph(T ), i.e., y = Tx. In other words, the pipeline
for showing continuity via the closed graph theorem is:

1. Assume xn → x.

2. Additionally assume Txn → y.

3. Show that Tx = y.

In many cases, this strategy is easier than the first one.

Of course, since we are interested in linear operators in Applied I, another
way of showing continuity is by showing boundedness. This can be shown in
multiple (equivalent) ways:

1. Show the existence of a constant C ≥ 0 such that for all x with ∥x∥ ≤ 1,
∥Tx∥ ≤ C.

2. Show the existence of of a constant C ≥ 0 such that for all x, ∥Tx∥ ≤
C ∥x∥.

3. Show the existence of a constant C ≥ 0 such that for all x ̸= 0,
∥Tx∥
∥x∥

≤ C.

Showing boundedness does not require our space to be Banach. Often, we do
not know beforehand what this constant C is, so you might find it useful to just
begin naively estimating ∥Tx∥ using whatever information the problem gives
you.

Showing Two Things are Equal

In classical analysis, a common way to show two real numbers x and y are equal
is by showing x ≤ y and then y ≤ x. This may also be useful in Applied I. How-
ever, the language of functional analysis gives us several more practical ways to
show things are equal; rather than directly comparing two objects, we compare
how these objects interact with functionals (i.e., comparing these objects in a
“weak” sense).
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In particular, in a normed linear space X, x = y if and only if f(x) = f(y)
for all f ∈ X∗ (recall that this follows from a corollary of Hahn-Banach: linear
functionals separate points). Similarly, in a Hilbert space H, x = y if and only
if ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ H. To recap, when showing x = y, the most common
methods are

• Classical: Show x ≤ y then y ≤ x. Setting: real numbers

• Complex Classical: Show ℜ(x) = ℜ(y) and ℑ(x) = ℑ(y). Setting: com-
plex numbers

• Strong Sense: Show ∥x− y∥ = 0 (or, alternatively, show ∥x− y∥ < ε for
all ε > 0). Setting: normed linear spaces

• Weak Sense: Show f(x) = f(y) for all f ∈ X∗. Setting: normed linear
spaces

• Inner Product Sense: Show ⟨x, z⟩ = ⟨y, z⟩ for all z ∈ H. Setting: inner
product spaces

For the inner product sense, you actually only need to show ⟨x, uα⟩ = ⟨y, uα⟩
for all uα in some ON basis (this follows from Parseval’s theorem).

Separating Points from Subspaces

Key intuition: linear functionals can be utilized geometrically. If you have a
closed subspace M and a point x /∈ M , there is a feeling that there should be
some “gap” between x and M . Linear functionals allow us to make this idea
concrete; in particular, we can use Mazur’s first separation lemma. In this case,
the lemma says there exists f ∈ X∗ such that f(x) > 0 and f |M ≡ 0. Having
such a linear functional in play is often quite useful (several problems below
will use this lemma to get clean proofs). Other results that use linear func-
tionals geometrically are Mazur’s second separation lemma and the separating
hyperplane theorem (FYI, all of these things follow from Hahn-Banach).

Obtaining a Limit

Often, desirable objects in functional analysis are not constructed explicitly, but
are rather obtained by taking a limit of some sequence. This is why we often
choose to study Banach and Hilbert spaces; in these settings, once we know a
sequence is Cauchy, we know it has a limit in our space. The prime example
of when this is used is in showing the existence of a best approximation in a
Hilbert space (recall that the strategy is to look at a sequence that gets “arbi-
trarily close” to the minimum distance, showing that sequence is Cauchy, then
taking its limit).

We also have tools to obtain limits without having to prove Cauchy-ness. For
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example, in finite-dimensional spaces, the Bolzano-Weierstrass theorem tells us
that bounded sequences have convergent subsequences. Often, we do not work
in finite-dimensional spaces, but we can upgrade to the infinite-dimensional set-
ting at the cost of replacing strong convergence with weak convergence by using
the Banach-Alaoglu theorem. Whenever you are working in a reflexive, separa-
ble Banach space (i.e., the most relevant Banach spaces), you can obtain weak
limits simply by constructing a bounded sequence; often, this weak limit will
be precisely what you need to complete a problem. Several of the problems
below will use this strategy; it is particularly useful when showing existence of
a solution to a problem like Tx = f , where T is a linear operator.

August 2025

Problem 1

(a)

Suppose y, z ∈ H satisfy Lx = ⟨x, y⟩ = ⟨y, z⟩ for all x ∈ H. Testing with

x = y − z, we get ∥y − z∥2 = ⟨y − z, y − z⟩ = 0, so y = z.

(b)

If ker(L) = H, then clearly we take y = 0. Otherwise, (ker(L))⊥ is nonzero, so
we can take a unit vector z ∈ (ker(L))⊥.

Trick: Define y := (Lz)z. We find

⟨x, y⟩ = ⟨(Lz)x, z⟩ = ⟨(Lz)x− (Lx)z, z⟩+ ⟨(Lx)z, z⟩ = ⟨(Lx)z, z⟩ = Lx.

since L((Lz)x− (Lx)z) = 0, and so (Lz)x− (Lx)z ⊥ z.

(c)

If L ≡ 0, then y = 0, making the result hold trivially. So, suppose y ̸= 0. First,
apply Cauchy-Schwarz to get

|Lx| = |⟨x, y⟩| ≤ ∥x∥ ∥y∥ , ∀x ∈ H,

establishing ∥L∥ ≤ ∥y∥. For the other inequality:

∥L∥ ≥
∣∣∣∣L( y

∥y∥

)∣∣∣∣ = 1

∥y∥
|⟨y, y⟩| = ∥y∥ .

Problem 2

(a)

X is separable if it contains a countable, dense, subset.
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(b)

X∗ is the normed linear space of continuous linear functionals from X to the
field F equipped with the operator norm.

(c)

Let {fn}∞n=1 be a countable, dense subset of X∗. For all n, we can find xn ∈ X

such that ∥xn∥ = 1 and |fn(xn)| ≥
1

2
∥fn∥. Let

D :=

{
n∑

i=1

qixi : qi ∈ Q

}
,

which is countable. We claim that D is dense in X. Clearly, D is a subspace (in
fact, it’s just the span of {xn}∞n=1). Suppose for the sake of contradiction that
there exists x /∈ D.

Trick: By Mazur’s first separation lemma, there exists f ∈ X∗ such that
f(x) > 0 but f |D ≡ 0 (it’s important that D is a closed, linear subspace of
X to use this lemma).

In particular, f(xn) = 0 for all n ∈ N. Now, {fn}∞n=1 is dense in X∗, so
there exists a subsequence {fnk

}∞k=1 converging to f . We conclude

∥fnk
∥ ≤ 2 |fnk

(xnk
)| = 2 |fnk

(xnk
)− f(xnk

)| ≤ 2 ∥fnk
− f∥ ∥xnk

∥
= 2 ∥fnk

− f∥ → 0.

Hence, fnk
→ 0, so f must be zero. This leads to a contradiction since f(x) > 0,

so D = X.

Problem 3

Let M := supn λn <∞.

(a)

We must first confirm that the series defining A converges for all x ∈ H. Let
x ∈ H and let Sn denote the n-th partial sum of Ax. If N > M , then

∥SN − SM∥2 =

∥∥∥∥∥
N∑

n=M+1

λn ⟨x, en⟩ en

∥∥∥∥∥
2

=

N∑
n=M+1

|λn ⟨x, en⟩|2 ≤M2
N∑

n=M+1

|⟨x, en⟩|2 .

by orthonormality. Now,
∑∞

n=1 |⟨x, en⟩|
2
converges by Parseval’s identity, so the

right hand side converges to 0 as N,M → ∞. Hence, {Sn}∞n=1 is Cauchy, so
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the series defining Ax does converge. Linearity is easy now that we know these
series converge:

A(αx+ y) =

∞∑
n=1

λn ⟨αx+ y, en⟩ en = α

∞∑
n=1

λn ⟨x, en⟩ en +

∞∑
n=1

λn ⟨y, en⟩ en.

For boundedness, we find

∥Ax∥2 =

∞∑
n=1

|λn ⟨x, en⟩|2 ≤M2 ∥x∥2

by applying Parseval’s again, so ∥A∥ ≤M . Last, we check self-adjointness:

⟨Ax, y⟩ =
∞∑

n=1

⟨λn ⟨x, en⟩ en, y⟩

=

∞∑
n=1

λn ⟨x, en⟩ ⟨y, en⟩

=

∞∑
n=1

⟨x, λn ⟨y, en⟩ en⟩ λn is real

= ⟨x,Ay⟩ ,

where the continuity of ⟨·, ·⟩ lets us pass inner products into the sum.

(b)

Clearly, σP (A) = {λn : n ∈ N} (remember: these eigenvalues need not be
distinct!). In particular, the eigenspace of each distinct eigenvalue λn is the
span of {em : m ∈ N, λm = λn}.

(c)

If all the λn are nonzero and are bounded away from zero (i.e., infn λn > 0),
then A is surjective. Remember that x =

∑∞
n=1 ⟨x, en⟩ en for all x ∈ H by

Riesz-Fischer. So, for all y ∈ H,

y =

∞∑
n=1

λn

〈
y

λn
, en

〉
en.

This leads to us defining x :=
∑∞

n=1

〈
y

λn
, en

〉
en. By our assumption,

1

λn
stays

bounded in n. Hence, this element x is well-defined (apply the same idea from
part (a)), and clearly Ax = y.
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(c)

Define the partial sums Anx :=
∑n

k=1 λk ⟨x, ek⟩ ek. Each An is a compact
operator since they are bounded with finite-dimensional range. If we can show
that An → A in the operator norm, we are done. Indeed, for any ε > 0, if we
choose N ∈ N such that λn < ε2 for all n ≥ N , then for all x ∈ H,

∥Anx−Ax∥2 =

∥∥∥∥∥
∞∑

k=n+1

λk ⟨x, ek⟩ ek

∥∥∥∥∥
2

=

∞∑
k=n+1

|λk ⟨x, ek⟩|2 ≤ ε2
∞∑

k=n+1

|⟨x, ek⟩|2 ≤ ε2 ∥x∥2

by Bessel’s inequality. Thus, ∥An −A∥ < ε, so An → A.

January 2025

Problem 1

=⇒ Notice that for all α ∈ (0, 1) and y, z ∈ S, we have y + α(z − y) =
αz + (1− α)y ∈ S. Hence,

∥x− y∥2 ≤ ∥x− [y + α(z − y)]∥2

= ∥x− y∥2 − 2α ⟨x− y, z − y⟩+ α2 ∥z − y∥2 the field is real.

Cancel out an α to get

⟨x− y, z − y⟩ ≤ α

2
∥z − y∥2 ,

and sending α→ 0 gives ⟨x− y, z − y⟩ ≤ 0.

⇐= We directly compute

∥x− z∥2 = ∥(x− y) + (y − z)∥2

= ∥x− y∥2 − 2 ⟨x− y, z − y⟩+ ∥y − z∥2

≥ ∥x− y∥2 + ∥y − z∥2

≥ ∥x− y∥2 .

Problem 2

Let {xn}∞n=1 be a bounded sequence in X. Since T1 is compact, {T (xn)}∞n=1 has
a convergent subsequence that we will call {T (x1,n)}∞n=1. From the bounded
subsequence {x1,n}∞n=1, we can extract another subsequence {x2,n}∞n=1 such
that T2(x2,n) converges. Now, continue inductively to get nested subsequences
{x1,n}∞n=1 ⊇ {x2,n}∞n=1 ⊇ . . . such that {Tm(xm,n)}∞n=1 converges for all m ∈ N.
From here, we apply our diagonalization argument: define x̃n = xn,n for all n.
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We claim T (x̃n) is Cauchy in Y , which is enough to complete the proof. Indeed,
if n ≥ m,

∥T (x̃n)− T (x̃m)∥ ≤ ∥T (x̃n)− Tm(x̃n)∥+ ∥Tm(x̃n)− Tm(x̃m)∥+ ∥Tm(x̃m)− T (x̃m)∥
≤ ∥T − Tm∥ · ∥x̃n∥+ ∥T − Tm∥ · ∥x̃m∥+ ∥Tm(x̃n)− Tm(x̃m)∥ .

The first two terms on the right hand side go to 0 as n,m→ ∞ since {Tn}∞n=1

converges to T in the operator norm and {x̃n}∞n=1 is bounded. The third term
also tends to 0 as n,m → ∞; this is because n ≥ m means x̃n is in the subse-
quence {xm,n}∞n=1.

Problem 3

It’s worth to check that PV(1/x) is well-defined in the sense that the limit exists
for all ϕ ∈ D. Indeed,

|⟨PV(1/x), ϕ⟩| =

∣∣∣∣∣ limε→0+

∫
|x|>ε

1

x
ϕ(x) dx

∣∣∣∣∣
= lim

ε→0+

∣∣∣∣∣ϕ(x) ln |x| ∣∣∣|x|>ε
−
∫
|x|>ε

ln |x|ϕ′(x) dx

∣∣∣∣∣
= lim

ε→0+

∣∣∣∣∣− ln(ε)[ϕ(ε)− ϕ(−ε)]−
∫
|x|>ε

ln |x|ϕ′(x) dx

∣∣∣∣∣ .
Take the limit of the boundary terms:

lim
ε→0+

|ln(ε)[ϕ(ε)− ϕ(−ε)]| = lim
ε→0+

∣∣∣∣2ε ln(ε) · [ϕ(ε)− ϕ(−ε)
2ε

]∣∣∣∣ = 0

since the term in brackets converges to ϕ′(0) and 2ε ln(ε) → 0. For the inte-
gral, recall that ln |x| is locally integrable and ϕ′(x) is bounded and compactly
supported, so by the dominated convergence theorem,

lim
ε→0+

∣∣∣∣∣
∫
|x|>ε

ln |x|ϕ′(x) dx

∣∣∣∣∣
converges. From this, linearity is easy to check. To show boundedness, fix
K ⊆⊆ R and let ϕ ∈ DK . We find

|⟨PV(1/x), ϕ⟩| = lim
ε→0+

∣∣∣∣∣
∫
|x|>ε

ln |x|ϕ′(x) dx

∣∣∣∣∣ =
∣∣∣∣∫

K

ln |x|ϕ′(x) dx
∣∣∣∣

≤ ∥ϕ′∥∞

∣∣∣∣∫
K

ln |x| dx
∣∣∣∣ ≤ ∥ϕ∥1,∞,R

∣∣∣∣∫
K

ln |x| dx
∣∣∣∣ ,

where the integral on the right is finite since ln |x| is locally integrable.
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Problem 4

(a)

For each n, there exists xn ∈ An. We claim that {xn}∞n=1 is Cauchy. Indeed, if
n ≥ m, then xn, xm ∈ Am, so

d(xn, xm) ≤ diam(Am) → 0.

Because X is complete, xn → x for some x ∈ X. Each An is closed as well, so
x ∈ An for all n ∈ N, i.e., x ∈

⋂∞
n=1An. To show that x is the only element in

this intersection, suppose y ∈
⋂∞

n=1An. Then, for all n ∈ N, x, y ∈ An, hence
d(x, y) ≤ d(An). But, d(An) → 0, so d(x, y) = 0.

(b)

Let {xn}∞n=1 be a Cauchy sequence. Then, there exists N1 ∈ N and a closed
ball B1 of radius 1 such that xn ∈ B1 for all n ≥ N1. Likewise, there exists
N2 ≥ N1 and a closed ball B2 of radius 1/2 such that xn ∈ B2 for all n ≥ N2.

From here, take An :=
⋂n

k=1Bk for all n. This gives us a sequence of nested
closed, nonempty sets A1 ⊇ A2 ⊇ . . . with diameters converging to 0. Hence,⋂∞

n=1An = {x} for some x ∈ X. We claim xn → x.

Notice that for all k ∈ N, if n ≥ Nk, then xn ∈ Ak. Let ε > 0 and choose
k ∈ N such that diam(Ak) < ε. Then, if n ≥ Nk, we have xn, x ∈ Ak, meaning
d(xn, x) < ε.

August 2024

Problem 1

(a)

T is closed if Graph(T ) := {(x, Tx) : x ∈ D} is topologically closed in X × Y .

(b)

Let X,Y be Banach spaces. An operator T : X → Y is bounded if and only if
it is closed.

(c)

=⇒ Let T be bounded and let {xn}∞n=1 be a sequence in D converging to
x ∈ X. Since T is continuous, Txn converges to some element y ∈ Y . In
particular, (xn, Txn) → (x, y). Now, since T is closed, Graph(T ) is closed, so
(x, y) ∈ Graph(T ), meaning x ∈ D, i.e., D is closed.
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⇐= Suppose D is closed. Then, D is a Banach space in its own right, so
by the closed graph theorem, T is bounded on D.

NB: For the forward implication, we cannot say Txn → Tx at the start since, at
this point, we do not know if x ∈ D (i.e., we don’t yet know if we are allowed to
plug x into T ). This is why we introduce this element y ∈ Y instead (although,
by the end of the proof, we do know that y = Tx).

Problem 2

(a)

Let X be a Banach space, Y a normed linear space, and {Tα}α∈I a collection of
bounded linear operators from X to Y . Then, {Tα}α∈I is uniformly bounded
in operator norm if and only if it is pointwise bounded.

(b)

For all x ∈ X, {Tnx}∞n=1 is Cauchy in Y and therefore bounded. Hence, {Tn}∞n=1

is uniformly bounded in operator norm by PUB.

(c)

Since Y is Banach, {Tnx}∞n=1 has a unique limit for all x ∈ X. Hence, T is
well-defined. For linearity, notice that

T (αx+ y) = lim
n→∞

Tn(αx+ y) = lim
n→∞

[αTnx+ Ty] = αTx+ Ty

since all of the above limits exist. For boundedness, compute

∥Tx∥ = lim
n→∞

∥Tnx∥ ≤ lim inf
n→∞

∥Tn∥ ∥x∥ ≤
(
sup
n

∥Tn∥
)
∥x∥ ,

and so ∥T∥ ≤ supn ∥Tn∥, which is finite by part (b).

Problem 3

(a)

By Parseval’s theorem,

∞∑
k=n

|⟨x, ek⟩|2

converges for all n ∈ N, and so

∥Pnx− x∥2 =

∥∥∥∥∥
∞∑

k=n+1

⟨x, ek⟩ ek

∥∥∥∥∥
2

=

∞∑
k=n+1

|⟨x, ek⟩|2 → 0

as n→ ∞. Hence, Pnx→ x.
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(b)

From part (a), we see that {fn}∞n=1 is bounded in n. Thus, {xn}∞n=1 is also
bounded in n by assumption. Because H is a separable Hilbert space, {xn}∞n=1

has a weakly convergent subsequence {xnk
}∞k=1 by Banach-Alaoglu. Let x be

the weak limit of this subsequence. We claim Ax = f .

Since A is bounded, Axn ⇀ Ax. From here, whenever nk ≥ j, we have

⟨Axnk
, uj⟩ = ⟨f, uj⟩

since the orthogonal projections of Axnk
and f onto span{u1, . . . , unk

} agree.
Hence, for all j ∈ N,

⟨Ax, uj⟩ = lim
k→∞

⟨Axnk
, uj⟩ = lim

k→∞
⟨f, uj⟩ = ⟨f, uj⟩ ,

and so Ax = f , since by Parseval’s theorem,

∥Ax− f∥2 =

∞∑
j=1

|⟨Ax− f, uj⟩|2 = 0.

January 2024

Problem 1

Linearity is obvious. By Hölder’s inequality,

∥Af∥qq =

∫
U

∣∣∣∣∫
V

K(u, v)f(v) dv

∣∣∣∣q du
≤
∫
U

∣∣∣∥K(u, ·)∥q ∥f∥p
∣∣∣q du

≤ ∥f∥qp ∥K∥qq ,

which implies ∥A∥ ≤ ∥K∥q.

For compactness, I believe we need to assume U and V are bounded. If this is
the case, we can use Arzelà-Ascoli and the fact that continuous functions are
dense in Lq. In particular, we can define a sequence {Kn}∞n=1 of continuous
functions on U × V that converge in Lq to K. Then, the integral operators
defined by

Anf(u) :=

∫
V

Kn(u, v)f(v) dv

are compact on C(U × V ) with the L∞ norm. However, since U × V has finite
measure, ∥f∥q ≤ ∥f∥∞ for all f ∈ Lq(V ). This, combined with the density
of continuous functions in Lp(U) tells us that each An is also compact as an
operator on Lp(U). Finally, repeating the computation at the start of this
problem reveals that ∥An −A∥ ≤ ∥Kn −K∥q → 0, and so A is compact being
a limit of compact operators.
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Problem 2

Let X be a reflexive Banach space and Y ⊆ X a closed linear subspace. Let
f ∈ Y ∗∗. Then, extend f by defining f̃(g) = f(g|Y ) for all g ∈ X∗. Clearly,
f̃ ∈ X∗∗. Since X is reflexive, f̃ = Ex for some x ∈ X. We claim x ∈ Y .

Trick: Suppose x /∈ Y . By Mazur’s first separation lemma, there exists g ∈ X∗

such that g(x) > 0 but g|Y ≡ 0. However, this means

g(x) = Ex(g) = f̃(g) = f(g|Y ) = 0,

a contradiction. Thus, x ∈ Y . Finally, for all h ∈ Y ∗,

f(h) = f̃(h) = h(x),

and so f = Ex (here, Ex is being thought of as an element of Y ∗∗).

Problem 3

First, we should notice that B = A∗, and since ∥A∥ = ∥A∗∥, it is enough to
show that B is bounded. First, consider the collection {Bφ}φ∈X∗,∥φ∥≤1. This
collection is pointwise bounded, since if x ∈ X and φ ∈ X∗ has norm at most
1, then

∥(Bφ)(x)∥ = ∥φ(Ax)∥ ≤ ∥φ∥ ∥Ax∥ ≤ ∥Ax∥ .

By PUB, {Bφ}φ∈X∗,∥φ∥≤1 is uniformly bounded, meaning ∥B∥ = supφ∈X∗,∥φ∥≤1 ∥Bφ∥ <
∞. Since B is bounded, so is A.

Problem 4

=⇒ I feel like we also need to assume A has a bounded inverse in order to
prove this direction. This is because Y is not complete, meaning OMT is not
directly applicable here. If this is the case, then for all x ∈ X,

∥x∥ =
∥∥A−1Ax

∥∥ ≤
∥∥A−1

∥∥ · ∥Ax∥ ,
meaning A is bounded below. Since (A∗)−1 = (A−1)∗, the same argument works
for A∗ as well.

⇐= Clearly, bounded below implies one-to-one, so we only need to show that
A is surjective. To this end, we will first show that R(A) is closed. Suppose
Axn → y in Y . Then, since A is bounded below,

∥xn − xm∥ ≤ γ ∥Axn −Axm∥

for some γ > 0. But the right hand side converges to 0 as n,m → ∞ since
{Axn}∞n=1 converges, so {xn}∞n=1 is Cauchy. Since X is complete, {xn}∞n=1 has
a limit x. But now, since A is continuous, Axn → Ax, and so y = Ax, i.e., R(A)

12



is closed. From here, we claim that R(A) = Y .

Trick: Suppose for the sake of contradiction that there exists y ∈ Y \ R(A).
Then, R(A) is a closed linear subspace of Y , so by Mazur’s first separation
lemma, there exists f ∈ Y ∗ such that f(y) > 0 but f |R(A) = 0. In other words,
A∗(f) = f ◦ A ≡ 0. However, A′ is also one-to-one, so f must be identically 0,
a contradiction. Hence, R(A) = Y , and so A is invertible.

Problem 5

Let K := [−1, 1]. Since T is a distribution, there exist C > 0 and n ∈ Z≥0 such
that

|Tϕ| ≤ C ∥ϕ∥n,∞,Ω

for all ϕ ∈ DK . Then, let h ∈ D be 1 on (−1, 1) and define hε(x) := h(x/ε).
Now, let g ∈ D satisfy g(0) = g′(0) = . . . = g(n)(0) = 0. Notice that for
any 0 < ε < 1, g − ghε is identically zero on an open ball around 0. Hence,
T (g) = T (ghε) by assumption. Now, we can take ε small enough such that
supp(ghε) ⊆ K, which will give us

|Tg| = |T (ghε)| ≤ C ∥(ghε)∥n,∞,Ω = C

n∑
k=0

∥∥∥(ghε)(k)∥∥∥
∞
.

Now, as ε→ 0, the above sum converges to
∑n

k=0

∣∣g(k)(0)∣∣ = 0. Hence, Tg = 0.

August 2023

Problem 1

For linearity, we see that

φ(f(αx+ y)) = αφ(f(x)) + φ(f(y)) = φ(αf(x) + f(y))

since φ ◦ f and φ are linear. Since this holds for all φ ∈ X∗, we must have
f(αx+ y) = αf(x) + f(y) by Hahn-Banach.

For boundedness, use PUB on the collection {f∗φ}φ∈Y ∗,∥φ∥≤1 like before to
get that f∗ is bounded. Hence, f is bounded as well.

Problem 2

=⇒ Suppose P is continuous. Clearly, N(P ) is closed. For the range, suppose
Pxn → y. We see Pxn = P 2xn → Py, and so y = Py ∈ R(P ).

⇐= Suppose N(P ) and R(P ) are closed.

13



Trick: Since we’re working over a Banach space, we can use the closed graph
theorem. Suppose (xn, Pxn) → (x, y), so xn → x and Pxn → y. Now, R(P )
being closed means y = Pz for some z. We claim Px = Pz. Notice that
P (xn − Pxn) = 0 for all n, and xn − Pxn → x− Pz, meaning x− Pz ∈ N(P )
since N(P ) is closed. Hence, Px = P 2z = Pz, which proves Graph(P ) is closed.

Problem 3

Let T be a compact operator, {xn}∞n=1 be a sequence that weakly converges to
x, and let {Txnk

}∞k=1 be a subsequence of {Txn}∞n=1. Recall that weakly con-
vergent subsequences are bounded, and so {Txnk

}∞k=1 has a further subsequence
that converges strongly. Note that this subsequence also converges weakly to
Tx since T is continuous, so by the uniqueness of weak limits, this subsequence
must converge to Tx strongly. Hence, the original sequence {Txn}∞n=1 converges
strongly to Tx by the Urysohn subsequence principle.

Problem 4

https://math.stackexchange.com/questions/2390715/sum-of-unitary-operators-
converges-to-projection-operator

(in recent years, unitary operators have not been discussed, so I doubt a problem
like this would show up).

Problem 5

Fix ϕ ∈ D and integrate by parts:∫
m2 sin(mx)ϕ(x) dx =

∫
m cos(mx)ϕ′(x) dx = −

∫
sin(mx)ϕ′′(x) dx.

Because ϕ′′ ∈ D as well, it suffices to show
∫
sin(mx)ϕ(x) dx → 0. For this, we

can use the fact that step functions are dense in L1. Notice that if a < b,∣∣∣∣∣
∫ b

a

sin(mx)

∣∣∣∣∣ dx =
1

m
|cos(mb)− cos(ma)| ≤ 2

m
→ 0.

Hence,
∫
sin(mx)ψ(x) dx → 0 for any step function ψ (i.e., ψ is a linear com-

bination of indicator functions of closed intervals). Now, for any ε > 0, there
exists a step function ψ such that ∥ϕ− ψ∥1 < ε. This gives us∣∣∣∣∫ sin(mx)ϕ(x) dx

∣∣∣∣ ≤ ∣∣∣∣∫ sin(mx)[ϕ(x)− ψ(x)] dx

∣∣∣∣+ ∣∣∣∣∫ sin(mx)ψ(x) dx

∣∣∣∣
≤ ∥sin(mx)∥∞ ∥ϕ− ψ∥1 +

∣∣∣∣∫ sin(mx)ψ(x) dx

∣∣∣∣
≤ ε+

∣∣∣∣∫ sin(mx)ψ(x) dx

∣∣∣∣ .
14
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The integral on the right vanishes as m→ ∞.

January 2023

Problem 1

(a)

The dual operator T ∗ is defined as T ∗(g) = g◦T . This is in Y ∗ since it is clearly
linear and ∥g ◦ T∥ ≤ ∥g∥ · ∥T∥ <∞.

(b)

The inequality in part (a) immediately tells us ∥T ∗∥ ≤ ∥T∥.

(c)

For all y ∈ X∗, there exists fy ∈ Y ∗ such that ∥fy∥ = 1 and fy(y) = ∥y∥. It
follows that for all x ∈ X,

∥Tx∥ = ∥fTx(Tx)∥ = ∥(T ∗fTx)(x)∥ ≤ ∥T ∗fTx∥ · ∥x∥ ≤ ∥T ∗∥ · ∥x∥ ,

establishing ∥T∥ ≤ ∥T ∗∥.

Problem 2

(a)

Inner product is linear in the first component and continuous, so this is obvious.

(b)

Let x ∈ N⊥ and suppose Sx = 0. Then, P⊥x ∈ N ∩ N⊥, meaning P⊥x = 0.
Thus, x ∈ N ∩N⊥, meaning x = 0.

Clearly, R(S) ⊆ R(T ). For the reverse, notice that Tx = T (Px + P⊥x) = Sx
since Px ∈ N , meaning R(T ) ⊆ R(S).

Problem 3

(a)

ϕj → ϕ if there existsK ⊆⊆ Ω such that suppϕj ⊆ K for all j and ∥ϕj − ϕ∥n,∞,Ω →
0 for all n ∈ N.

15



(b)

=⇒ Proceed by contrapositive. Suppose the boundedness condition does not
hold. Then, there exists some K ⊆⊆ Ω such that for all n ∈ N, there exists
ϕn ∈ DK such that

|T (ϕn)| > n ∥ϕn∥n,∞,Ω .

Trick: Normalize by defining ϕ̃n :=
ϕn

n ∥ϕn∥n,∞,Ω

. (notice that all the ϕn must

be nonzero, otherwise the inequality above would not hold). Then, if j ≤ n,∥∥∥ϕ̃n∥∥∥
j,Ω,∞

≤
∥∥∥ϕ̃n∥∥∥

n,Ω,∞
=

1

n
→ 0,

meaning ϕ̃n → 0 in D. However,
∣∣∣T (ϕ̃n)∣∣∣ > 1 for all n, meaning T is not con-

tinuous.

⇐= The boundedness condition immediately implies continuity, since if ϕj → ϕ
in D(Ω), then

|T (ϕj)− T (ϕ)| ≤ C ∥ϕj − ϕ∥n,∞,Ω → 0,

where n is the order of T .

August 2022

Problem 1

(a)

fn → f in weak-* if fn(x) → f(x) for all x ∈ X.

(b)

If fn converges weak-* to two functionals, those functionals must agree on all
of X.

(c)

August 2024, problem 2(a).

(d)

Since {fn(x)}∞n=1 converges for all x ∈ X, the collection {fn}∞n=1 is pointwise
bounded and therefore uniformly bounded by PUB.
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Problem 2

(a)

Since B ⊆ Y , we have d(x0, Y ) ≤ d(x0,B). Also, ∥x0∥ = d(x0, 0) ≥ d(x0,B).
Since Y is a finite-dimensional subspace, it is closed, and so d(x0, Y ) = 0 would
imply x0 ∈ Y and therefore d(x0,B) = 0 as well. Hence, we can assume
d(x0, Y ) > 0. Then, let 0 < ε < d(x0, Y ). There exists y0 ∈ Y such that
∥x0 − y0∥ < d(x0, Y ) + ε. Now, if y0 /∈ B, then ∥y0∥ > 3 ∥x0∥, meaning

2d(x0, Y ) > d(x0, Y ) + ε > ∥x0 − y0∥ ≥ |∥x0∥ − ∥y0∥| > 2 ∥x0∥ ≥ 2d(x0,B) ≥ 2d(x0, Y ),

a contradiction. Thus, y0 ∈ B, meaning

d(y0,B) ≤ ∥x0 − y0∥ < d(x0, Y ) + ε.

Sending ε→ 0 gives the other inequality.

(b)

Since B is a closed and bounded subset of a finite-dimensional space, it is com-
pact by Heine-Borel. Now, consider the map y 7→ ∥x0 − y∥ from B to [0,∞).
This is continuous by triangle inequality, and so it achieves a minimum on B.
In other words, there exists y0 ∈ B such that

∥x0 − y∥ = min
z∈B

∥x0 − z∥ = inf
z∈B

∥x0 − z∥ = d(x0,B) = d(x0, Y ).

(c)

Using the example in the hint, consider x0 = (1,−1). Then, for any (a, a) ∈
Y = span(1, 1), we have

∥(a, a)− (1,−1)∥ℓ1 = |a− 1|+ |a+ 1| .

The right hand side attains its minimum at multiple values, for example, a = 0
and a = 1. Hence, (0, 0) and (1, 1) are both best approximations of x0 in Y .

Problem 3

(a)

If {xn}∞n=1 is a bounded sequence, then so is {Sxn}∞n=1, meaning {(TS)xn}∞n=1

has a convergent subsequence. Likewise, {Txn}∞n=1 has a convergent subse-
quence {Txnk

}∞k=1, and so {(ST )xnk
}∞k=1 converges.

17



(b)

Quote the spectral theorem for compact operators. In particular, the spectrum
of a compact operator consists of only countably many eigenvalues (except pos-
sibly 0). Also, each nonzero eigenvalue has a finite-dimensional eigenspace. If
there are infinitely many eigenvalues, then they converge to 0 and 0 is a spectral
value (since the spectrum is compact). If X is infinite-dimensional, 0 is in the
spectrum.

(c)

Notice that S + T = S(I + S−1T ) = S(S−1T )−1. By the open mapping theo-
rem, S−1 is a bounded linear operator, so S−1T is compact by part (a). Also,
(S−1T )−1 = S−1(S+T ), which is injective. If −1 was a spectral value of S−1T ,
then it must be an eigenvalue by part (b), meaning (S−1T )−1 would not be
injective. Thus, −1 ∈ ρ(S−1T ), meaning (S−1T )−1 is invertible. It follows that
S + T is invertible.

January 2022

Problem 1

(a)

For any f ∈ X∗, |f(xn)− f(x)| ≤ ∥f∥ · ∥xn − x∥ → 0.

(b)

Suppose x and y are both weak limits of {xn}∞n=1. Then, f(x) = f(y) for
all f ∈ X∗. By Hahn-Banach, there exists g ∈ X∗ such that ∥g∥ = 1 and
g(x− y) = ∥x− y∥. The left hand side is zero, so x = y.

(c)

Consider the collection of evaluation maps {Exn}
∞
n=1 ⊆ X∗∗. This collection is

pointwise bounded since {Exn
(f)}∞n=1 = {f(xn)}∞n=1 converges for all f ∈ X∗.

By PUB, {Exn
}∞n=1 is bounded, but ∥Ey∥ = ∥y∥ for all y ∈ X, meaning {xn}∞n=1

is bounded too.

(d)

Take f ∈ X∗ such that ∥f∥ = 1 and f(x) = ∥x∥. We have

∥x∥ = f(x) = lim
n→∞

f(xn) ≤ lim inf
n→∞

∥f∥ ∥xn∥ = lim inf
n→∞

∥xn∥ .
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Problem 2

(a)

Let (X, d) be a complete metric space and {Un}∞n=1 a countable collection of
open, dense subsets of X. Then,

⋂∞
n=1 Un is dense in X as well.

Important consequence: X is not a countable union of nowhere dense sets.

(b)

If {en}∞n=1 was a Hamel basis, then X =
⋃∞

n=1 span{e1, . . . , en}. Fix n ∈ N;
we will show that Y := span{e1, . . . , en} is nowhere dense. Since finite dimen-
sional subspaces are always closed, this amounts to showing span{e1, . . . , en}
has empty interior. Suppose Y contains an open ball Bδ(x). Then, since Y
is closed, it must contain Bδ(x) as well. However, this would suggest that
Bδ(x) is compact by Heine-Borel being a closed and bounded subset of a finite-
dimensional subspace. This is a contradiction since X is infinite-dimensional,
so Y contains no open ball, i.e., its interior is empty. Because of this, X ̸=⋃∞

n=1 span{e1, . . . , en}, so there is no countably infinite Hamel basis.

Problem 3

(a)

See “ ⇐= ” on problem 4 of January 2024.

(b)

Compute

⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩.

(c)

This proof consists of three parts:

1. Show the point spectrum is real.

2. Show that λ ∈ ρ(T ) if Tλ is bounded below.

3. Show that the whole spectrum is real.

First, let λ ∈ σp(T ) with x a corresponding eigenvector. Then,

⟨Tx, x⟩ = λ ⟨x, x⟩ =⇒ λ =
⟨Tx, x⟩
∥x∥2

∈ R

by part (b).
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Next, if Tλ is bounded below, then it is injective and has a closed range by
part (a). We claim R(Tλ) = H. If this is not the case, then, since R(Tλ) is
closed, there exists some nonzero x ∈ (R(Tλ))

⊥. Thus,

⟨Tλ̄x, y⟩ = ⟨Tx, y⟩ − λ̄ ⟨x, y⟩ = ⟨x, Ty⟩ − ⟨x, λy⟩ = ⟨x, Tλy⟩ = 0

for all y ∈ H, meaning Tλ̄x = 0. But this suggests λ̄ ∈ σp(T ), and since the
eigenvalues of T are real, λ ∈ σp(T ). This is a contradiction since Tλ is injective,
so R(Tλ) = H. Finally, Tλ being a bijection also means its inverse is bounded
by open mapping theorem, so λ ∈ ρ(T ).

Finally, suppose λ := α+ iβ ∈ σ(T ). Then, for all x,

⟨Tλx, x⟩ − ⟨Tλx, x⟩ = ⟨Tx, x⟩ − λ ∥x∥2 − ⟨Tx, x⟩+ λ ∥x∥2 = −2iβ ∥x∥2 .

If β ̸= 0, then by triangle inequality and Cauchy-Schwarz,

|β| ∥x∥2 =
1

2

[
|⟨Tλx, x⟩| −

∣∣∣⟨Tλx, x⟩∣∣∣] ≤ |⟨Tλx, x⟩| ≤ ∥Tλx∥ ∥x∥,

meaning ∥Tλx∥ ≥ |β| ∥x∥, i.e., Tλ is bounded below. However, this means
λ ∈ ρ(T ), a contradiction. So, we must have β = 0, i.e., λ is real.

August 2021

Problem 1

(a)

Clearly, fy is linear, and the sum defining fy(x) is finite for all x ∈ c0 since

|fy(x)| ≤
∞∑
j=1

|xjyj | ≤ ∥x∥ℓ∞ ∥y∥ℓ1 .

Also, this suggests ∥fy∥ ≤ ∥y∥ℓ1 .

(b)

Letting (xn) be the sequences given in the hint, we find that ∥(xn)∥ℓ∞ ≤ 1 for
all n, and

∥fy∥ ≥ |fy(xn)| =

∣∣∣∣∣∣
∞∑
j=1

xnj yj

∣∣∣∣∣∣ =
n−1∑
j=1

|yj | .

Since y ∈ ℓ1, |fy(xn)| → ∥y∥ℓ1 as n→ ∞, giving us ∥fy∥ ≥ ∥y∥ℓ1 .
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(c)

Let e(1), e(2), . . . , be the usual Schauder basis of c0, and let y be the sequence

defined by yj = f(e(j)).

We now claim y ∈ ℓ1. First, for all N ∈ N, define x(N) by

x
(N)
j :=

{
sgn(yj) j ≤ N,

0 j > N
,

where sgn(z) is the sign function on the complex numbers. Each x(N) is in c0
since they are eventually 0, and

∥∥x(N)
∥∥ ≤ 1 for all N . Hence,

N∑
j=1

|yj | =
∞∑
j=1

x
(N)
j yj =

∞∑
j=1

x
(N)
j f(e(j)) = f(x(N)) ≤ ∥f∥

∥∥∥x(N)
∥∥∥
∞

≤ ∥f∥ .

Since ∥f∥ is fixed and finite, we can send N → ∞ to get
∑∞

j=1 |yj | <∞.

Now, for all x ∈ c0,
∑n

j=1 xje
(j) → x in ℓ∞ since xj → 0. This gives us

f(x) = lim
n→∞

f

 n∑
j=1

xje
(j)

 = lim
n→∞

n∑
j=1

xjyj = fy(x).

Problem 2

(a)

Recall that infy∈M ∥x− y∥ = ∥x− PMx∥, where PM is the orthogonal projec-
tion onto M . Also, since PMx ∈M , we have PPMx = PMx, giving us

∥x− Px∥ ≤ ∥x− PMx∥+ ∥PMx− Px∥ = ∥x− PMx∥+ ∥P (PMx− x)∥
≤ (∥P∥+ 1) ∥x− PMx∥ = (∥P∥+ 1) inf

y∈M
∥x− y∥ ,

and so take C := ∥P∥+ 1.

(b)

=⇒ If P is an orthogonal projection, then N =M⊥. So,

inf
y∈N,∥y∥=1,x∈M

∥y − x∥2 = inf
y∈N,∥y∥=1,x∈M

(
∥y∥2 + ∥x∥2

)
= inf

x∈M

(
1 + ∥x∥2

)
= 1.

Thus, infy∈N,∥y∥=1,x∈M ∥y − x∥ = 1 as well.

⇐= We claim that for all z ∈ H, z − Pz = Qz ⊥ M . To this end, fix

21



z ∈ H and define y = Qz/ ∥Qz∥ (of course, if Qz = 0, then it is orthogonal to
M , so we can assume it is not zero). Then, y ∈ N with ∥y∥ = 1, and so

1 = inf
w∈N,∥w∥=1,x∈M

∥x− w∥ ≤ inf
x∈M

∥x− y∥ ≤ ∥y∥ = 1.

Thus, the element in M closest to y is 0, i.e., PMy = 0. This means y ∈ M⊥,
so z − Pz ∈M⊥ as well.

From here, P is the orthogonal projection onto M , since for any z ∈ H and
y ∈M ,

∥z − y∥2 = ∥z − Pz + Pz − y∥2 = ∥z − Pz∥2 + ∥Pz − y∥2 ≥ ∥z − Pz∥2

since Pz − y ∈M and is therefore orthogonal to z − Pz.

Problem 3

(a)

State PUB

(b)

Use triangle inequality:

∥Lnxn − Lx∥ ≤ ∥Lnxn − Lnx∥+ ∥Lnx− Lx∥ ≤ ∥Ln∥ ∥xn − x∥+ ∥Lnx− Lx∥ .

Since {Lnx}∞n=1 converges for all x ∈ X, {Ln}∞n=1 is bounded by PUB. So, the
first term on the RHS converges to 0. Likewise, the second term converges to 0
since Ln → L in weak-*.

(c)

Using the example, we have that en ⇀ 0 since (ℓ2)∗ = ℓ2. From here, let Ln be
given by Lnx = xn. Then, Ln → 0 in weak-*, but Ln(xn) = 1 for all n.

January 2021

Problem 1

Use closed graph theorem. Let (xn, Axn) → (x, y). Then, xn → x and Axn → y,
so BAxn → By since B is continuous. But now, (xn, BAxn) → (x,By), and
since BA is continuous, By = BAx by closed graph theorem. But now, B is
injective, so y = Ax.
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Problem 2

=⇒ Immediate from PUB

⇐= Let x ∈ X, ε > 0, and y an element of this dense subset such that
∥x− y∥ < ε. Then,

∥Anx−Amx∥ ≤ ∥Anx−Any∥+ ∥Any −Amy∥+ ∥Amy −Amx∥
≤ ε(∥An∥+ ∥Am∥) + ∥Any −Amy∥ .

Since {Any}∞n=1 is Cauchy, the second term goes to 0, and from the uniform
bound, the first term can also be made arbitrarily small.

Problem 3

Recall that precompact sets are separable. Now,

Y = A(X) = A

( ∞⋃
n=1

Bn(0)

)
=

∞⋃
n=1

A(Bn(0)).

Since A−1 is compact, each A(Bn(0)) is precompact and therefore separable.
This means Y is also separable (just join the countable dense subsets of each
member of the union).

For the second part, we can relate the spectra of A and A−1. By hypothe-
sis, 0 ∈ ρ(A). Notice that for any λ ̸= 0,

A− λI = −λA(A−1 − λ−1I).

But A is injective, has a dense range, and has a bounded inverse, so if λ ∈ σ(A),
then λ−1 ∈ σ(A−1). But A−1 is compact, so its nonzero spectral values are all
eigenvalues. This then forces λ ∈ σp(A), for if A−1x = λ−1x, then Ax = λx.
So, all spectral values of A are eigenvalues.

Problem 4

Don’t worry about this one; Fourier transform is not an Applied I topic.

August 2020

Problem 1

By PUB, M := sups∈S ∥Ts∥ < ∞. Let Xσ be the set of x ∈ X such that
Tsx → Tσx as s → σ. Suppose {xn}∞n=1 is a sequence in Xσ converging to x,
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and let {sm}∞m=1 be a sequence in S converging to σ. We claim Tsnx→ Tσx as
n→ ∞. Use triangle inequality:

∥Tsmx− Tσx∥ ≤ ∥Tsmx− Tsmxn∥+ ∥Tsmxn − Tσxn∥+ ∥Tσxn − Tσx∥
≤ 2M ∥x− xn∥+ ∥Tsmxn − Tσxn∥ .

We now have two indices, so some care should be taken. First, let ε > 0 and
pick n ∈ N such that

∥x− xn∥ <
ε

4(M + 1)
.

Then, since xn ∈ Xσ, there exists M ∈ N such that

∥Tsmxn − Tσxn∥ <
ε

2

for all m ≥M . With this setup, we will have ∥Tsmx− Tσx∥ < ε for m ≥M .

Problem 2

The weak closure of the unit sphere is the unit ball:

https://math.stackexchange.com/questions/153889/prove-the-weak-closure-of-the-
unit-sphere-is-the-unit-ball.

In particular, 0 is in the weak closure of the unit sphere, so there exists a
sequence in the unit sphere converging weakly to 0.

Problem 3

=⇒ I believe we need to assume Y is separable as well in order to prove this.
If we assume this much, we have a countable ON basis {en}∞n=1, and by Riesz-
Fischer,

Tx =

∞∑
n=1

⟨Tx, en⟩ en.

The partial sums are finite-rank operators that converge in operator norm to T .

⇐= Same as January 2025, problem 2 since finite-rank operators are compact
by Heine-Borel

Problem 4

Same as August 2023, problem 2.
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January 2020

Problem 1

(a)

State CGT.

(b)

Suppose (xn, Axn) → (x, y). We need to show y = Ax to apply the closed graph
theorem. To this end, let z ∈ X and compute

⟨y, z⟩ = lim
n→∞

⟨Axn, z⟩ = lim
n→∞

⟨Az, xn⟩ = ⟨Az, x⟩ = ⟨Ax, z⟩ ,

and so Ax = y.

(c)

https://math.stackexchange.com/questions/216858/positive-operator-is-bounded

Problem 2

(a)

By inspection, there is no convergence at x = 0. For x ̸= 0, think of the limit
as a continuous one and use L’Hôpital’s rule:

n1/p−1

pxenx
=

1

pxn(p−1)/penx
→ 0

since
p− 1

p
≥ 0.

(b)

Just compute the Lp norm:∫ 1

0

|gn(x)|p =

∫ 1

0

ne−pnx dx = − n

pn
e−pnx

∣∣∣∣∣
1

0

=
1

p

[
1− e−pn

]
→ 1

p
.

In particular, gn ̸→ 0 in Lp.

(c)

Recall that gn ⇀ 0 weakly in Lp if∫ 1

0

fgn → 0
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for all f ∈ Lq, where q is the conjugate exponent of p. This does not work when

p = 1, since in this case, we can take f = χ[0,1], and by part (b),
∫ 1

0
gn → 1.

Now, suppose p > 1. First, notice that for 0 ≤ a < b ≤ 1,∫ b

a

gn(x) dx = n(1−p)/p[e−an − e−bn] ≤ 2n(1−p)/p → 0

since
1− p

p
< 0. So, for all step functions f ,

∫
fgn → 0. Since step functions

are dense in Lq, we have weak convergence.

Problem 3

Let Z = Y + Fw, which is a linear subspace of X. Then, define f : Z → F as
f(y + λw) = λd. Clearly, f is linear with f(w) = d and f(y) = 0 for all z ∈ Y .
We will check that ∥f∥ ≤ 1. Indeed, if y + λw ∈ Z with λ ̸= 0, then

|f(y + λw)| = |λ| d =
∥y + λw∥
∥y + λw∥

|λ| d =
∥y + λw∥

∥λ−1y + w∥
d ≤ ∥y + λw∥

since λ−1y + w = w − (−λ−1y), which is a distance between w and Y and
therefore greater than d. The inequality |f(y + λw)| ≤ ∥y + λw∥ still holds
when λ = 0, so ∥f∥ ≤ 1. From here, use Hahn-Banach to extend to all of X;
this extension will still have all the desired properties.

August 2019

Problem 1

(a)

Quote the theorem: If A is a self-adjoint, compact operator, then there exists
an orthonormal basis of eigenvectors {uα} with eigenvalues {λα} such that for
all x ∈ H,

Ax =
∑
α∈I

λα ⟨x, uα⟩uα.

(b)

Using Arzelà–Ascoli and the density of C(Ω) in L2(Ω), T is compact. Also, since
K is symmetric, T is also self-adjoint. So, we can apply the spectral theorem
above, and since L2(Ω) is separable, we can assume this ON basis of eigenvectors
is countable. Call this ON basis {ej}∞j=1 and their eigenvalues {λj}∞j=1. Notice
that

λjej(x) = Tej(x) =

∫
K(x, y)ej(y) dy,
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and since K is nonnegative, the eigenvalues λj must also be nonnegative. Now,
for all f ∈ L2 and x ∈ Ω,

∫
Ω

 ∞∑
j=1

λjej(x)ej(y)

 f(y) dy =

∞∑
j=1

λjej(x)

∫
Ω

f(y)ej(y) dy

=

∞∑
j=1

λj ⟨f, ej⟩ ej(x) the field is real

= Tf(x)

=

∫
Ω

K(x, y)f(y) dy.

On the first line, we use DCT to exchange integration with summation. Since
this holds for all f ∈ L2, we must have K(x, y) =

∑∞
j=1 λjej(x)ej(y).

(c)

Directly compute∫
Ω

K(x, x) dx =

∫
Ω

∞∑
j=1

λje
2
j (x) dx =

∞∑
j=1

λj

∫
Ω

e2j (x) dx =

∞∑
j=1

λj ,

where monotone convergence theorem lets us swap integration with summation
(notice that each term is nonnegative).

Problem 2

(a)

Directly compute:

∥x+ y∥2 + ∥x− y∥2 = 2 ∥x∥2 + 2 ∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩ − ⟨x, y⟩ − ⟨y, x⟩

= 2(∥x∥2 + ∥y∥2).

(b)

First, we need to reveal a candidate for the best approximation. Let δ =
dist(x,M). Then, there is a sequence {yn}∞n=1 inM such that δn := ∥x− yn∥ →
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δ. We claim that {yn}∞n=1 is Cauchy. For this, we use the parallelogram law:

∥yn − ym∥2 = ∥(yn − x) + (x− ym)∥2

= 2(∥yn − x∥2 + ∥x− ym∥2)− ∥(yn − x)− (x− ym)∥2

= 2(δ2n + δ2m)− 4

∥∥∥∥yn + ym
2

− x

∥∥∥∥2
≤ 2(δ2n + δ2m)− 4δ2

→ 4δ2 − 4δ2

= 0,

where on the fourth line, we use the fact that
yn + ym

2
∈ M due to convexity.

Since {yn}∞n=1 is Cauchy, it has a limit y, and the closedness ofM means y ∈M .
Then, y is the best approximation of x in M , since, by the continuity of ∥·∥,

∥x− y∥ = lim
n→∞

∥x− yn∥ = lim
n→∞

δn = δ = inf
z∈M

∥x− z∥ .

For uniqueness, suppose ∥x− z∥ = δ for some z ∈ M . Then, apply parallelo-
gram law again:

∥y − z∥2 = ∥(y − x) + (x− z)∥2

= 2(∥y − x∥2 + ∥x− z∥2)− ∥(y − x)− (x− z)∥2

= 4δ2 − 4

∥∥∥∥y + z

2
− x

∥∥∥∥2
≤ 4δ2 − 4δ2

= 0,

meaning y = z.

Problem 3

(a)

Dual spaces are complete, so we can use closed graph theorem. Suppose (fn, Sfn) →
(f, g). Then, since fn → f strongly, fn → f in weak-* as well. This means
Sfn → Sf in weak-* by hypothesis. However, Sfn → g strongly and therefore
in weak-*, and since weak-* limits are unique, g = Sf , meaning Graph(S) is
closed.

(b)

If fn → f in weak-*, then for all x ∈ X,

(T ∗fn)(x) = fn(Tx) → f(Tx) = (T ∗f)(x),

so T ∗fn → T ∗f in weak-*, meaning T ∗ is weakly-* sequentially continuous.
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(c)

Follows from (a) and (b).

January 2019

Problem 1

(a)

=⇒ Easy:

λ ⟨x, x⟩ = ⟨Tx, x⟩ = ⟨x, Tx⟩ = λ ⟨x, x⟩ .

⇐= Fix x, y ∈ H. Then, apply T to x− y:

⟨T (x− y), x− y⟩ = ⟨Tx, x⟩+ ⟨Ty, y⟩ − ⟨Tx, y⟩ − ⟨x, Ty⟩.

The left hand side and the first two terms on the right hand side are real, so
⟨Tx, y⟩ + ⟨x, Ty⟩ ∈ R; this means the imaginary parts of ⟨Tx, y⟩ and ⟨x, Ty⟩
agree.

To see that their real parts agree, this time, apply T to ix− y:

⟨T (ix− y), ix− y⟩ = −⟨Tx, x⟩+ ⟨Ty, y⟩ − i ⟨Tx, y⟩+ i⟨x, Ty⟩.

Now, ⟨Tx, y⟩−⟨x, Ty⟩ is a purely imaginary number, so the real parts of ⟨Tx, y⟩
and ⟨x, Ty⟩ must agree. Hence, ⟨Tx, y⟩ = ⟨x, Ty⟩, so T is self-adjoint.

(b)

Same as August 2019, problem 1(a)

(c)

From the spectral theorem,

Tx =
∑
α∈I

λα ⟨x, eα⟩ eα.

From here, we can compute ⟨Tx, x⟩ for some inspiration on how to define P and
N :

⟨Tx, x⟩ =
∑
α∈I

⟨λα ⟨x, eα⟩ eα, x⟩ =
∑
α∈I

λα ⟨x, eα⟩ ⟨eα, x⟩ =
∑
α∈I

λα |⟨x, eα⟩|2

(remember that the inner product is continuous and the sum above must be a
countable sum by Riesz-Fischer, so exchanging the inner product and sum is
legit). In particular, to guarantee that T is a positive operator, we should pick
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out all the positive values of λα. This leads us to define βα = max(λα, 0) and
γα = max(−λα, 0). Then, P and N are given by

Px =
∑
α∈I

βα ⟨x, eα⟩ eα,

Nx =
∑
α∈I

γα ⟨x, eα⟩ eα.

With this, it is easy to check that P and N have all the desired properties.

Problem 2

(a)

Same as January 2022, problem 1(d)

(b)

The closed unit ball in X∗ is compact in the weak-* topology of X∗.

(c)

Bounded below =⇒ one-to-one, so uniqueness is guaranteed. Thus, we only
need to show existence, and for this, the Banach-Alaoglu theorem will surely be
used.

Let f ∈ Y and let {fn}∞n=1 be a sequence in D converging to f . For all n,
there exists xn such that Txn = fn. Since T is continuous, we are lead to be-
lieve that a solution x to Tx = f might be obtained by taking a limit of {xn}∞n=1

in some way. Notice that M := supn ∥fn∥ < ∞ since {fn}∞n=1 converges, and
since T is bounded below,

∥xn∥ ≤ γ ∥Txn∥ = γ ∥fn∥ ≤ γM

for some γ > 0. In other words, the sequence {xn}∞n=1 is bounded. By combin-
ing Banach-Alaoglu with the fact that X is symmetric and reflexive, {xn}∞n=1

has a weakly convergent subsequence {xnk
}∞k=1; let x be the weak limit of this

subsequence. From here, we claim Tx = f .

Since xnk
⇀ x and T is continuous, Txnk

⇀ Tx, meaning

h(Tx) = lim
k→∞

h(Txnk
) = lim

k→∞
h(fnk

) = h(f)

for all h ∈ Y ∗; this is enough to conclude that Tx = f .
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Problem 3

(a)

=⇒ By Cauchy-Schwartz,

|Ly(f)| = |f(y)| = |⟨f,K(·, y)⟩| ≤ ∥f∥ ∥K(·, y)∥ ,

so ∥Ly∥ ≤ ∥K(·, y)∥ <∞.

⇐= For all y ∈ Rd, Riesz representation gives some gy ∈ H such that Ly(f) =
⟨f, gy⟩ for all f ∈ H. Define K(x, y) := gy(x). Then, K(·, y) = gy ∈ H, and
⟨f,K(·, y)⟩ = ⟨f, gy⟩ = Ly(f) for all f .

(b)

Suppose K and K ′ are both reproducing kernel functions. Then, ⟨f,K(·, y)⟩ =
⟨f,K ′(·, y)⟩ for all y ∈ Rd and f ∈ H. This means K(·, y) = K ′(·, y) for all
y ∈ Rd, and so K = K ′.

For the other result, compute

K(x, y) = ⟨K(·, y),K(·, x)⟩ = ⟨K(·, x),K(·, y)⟩ = K(y, x).

(c)

By Riesz representation, there exists some g ∈ H such that Lf = ⟨f, g⟩ for all
f ∈ H. Thus,

z(y) = LK(·, y) = ⟨K(·, y), g⟩ = ⟨g,K(·, y)⟩ = g(y).

Thus, z = g ∈ H. Moreover, Lz = ⟨z, z⟩ = ∥z∥2, and again by Riesz, ∥z∥2 =

∥L∥2.

January 2017

Problem 1

(a)

Since Pj is an orthogonal projection, Mj = N⊥
j . This gives us

∥x∥2 =
∥∥Pjx+ P⊥

j x
∥∥2 = ∥Pjx∥2 +

∥∥P⊥
j x
∥∥2 ≥ ∥Pjx∥2 .

Thus, ∥Pj∥ ≤ 1. For positivity,

⟨Pjx, x⟩ =
〈
Pjx, Pjx+ P⊥

j x
〉
= ⟨Pjx, Pjx⟩ = ∥Pjx∥ ≥ 0

since Pjx ⊥ P⊥
j x.
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(b)

Follow the order given in the hint:

(i) =⇒ (ii) ∥P1x∥ = ∥P1P2x∥ ≤ ∥P1∥ ∥P2x∥ ≤ ∥P2x∥ by part (a).

(ii) =⇒ (iii) Use the computation at the end of part (a):

⟨(P2 − P1)x, x⟩ = ⟨P2x, x⟩ − ⟨P1x, x⟩ = ∥P2x∥ − ∥P1x∥ ≥ 0,

and so P2 ≥ P1.

(iii) =⇒ (iv) Suppose x ∈ N2. Then,

0 ≤ ⟨(P2 − P1)x, x⟩ = −⟨P1x, x⟩ = −∥P1x∥ ≤ 0.

The only way this can hold is if P1x = 0, i.e., if x ∈ N1.

(iv) =⇒ (v) Recall that Mj = N⊥
j , and from the definitions, it is clear that

M1 ⊆M2 if N1 ⊇ N2.

(v) =⇒ (i) Let x ∈ H. Then, P1x ∈ M1 ⊆ M2, so P2(P1x) = P1x, mean-
ing P2P1 = P1. Likewise,

(P1P2)x = P1(x− P⊥
2 x) = P1x− P1P

⊥
2 x.

Now, P⊥
2 x ∈ N2 ⊆ N1 (remember that ⊥ reverses set inclusions), so P1P

⊥
2 x = 0,

establishing P1P2 = P1.

Problem 2

(a)

Technically, B∗ maps X∗∗ to Y ∗. By B∗x, they mean B∗(Ex), where Ex is the
evaluation map in X∗∗ associated with x.

(b)

We are told that A is onto, and if Ax = 0, then ∥x∥2 ≤ α−1Ax(x) = 0, meaning
A is injective as well. Thus, A is invertible with a bounded inverse A−1 by
OMT. Now, for all nonzero y ∈ X,

∥y∥2 ≤ α−1 |Ay(y)| ≤ α−1 ∥Ay∥ ∥y∥ ,

and so ∥y∥ ≤ α−1 ∥Ay∥. Replacing y with A−1x (for x nonzero) gives∥∥A−1x
∥∥ ≤ α−1 ∥x∥ ,

and so
∥∥A−1

∥∥ ≤ α−1.
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(c)

Suppose (x′, y′) is also a solution and set w = x − x′ and z = y − y′. Since A,
B, and C are linear, we see that (w, z) is a solution to

Aw −Bz = 0,

B∗w + Cz = 0.

From these equations, we have Aw(w) − Bz(w) = 0 and B∗w(z) + Cz(z) = 0.
Since B∗w(z) = Ew(Bz) = Bz(w), we have Aw(w) + Cz(z) = 0 by adding the
previous equations. Thus,

0 = Aw(w) + Cz(z) ≥ α ∥w∥2 + γ ∥z∥2 ,

which forces w = z = 0, i.e., x = x′ and y = y′.

(d)

Not sure. If you have a solution to this part, please reach out!

Problem 3

(a)

Our kernel is sin((x + y)/2), which is in L2(I2). So, compactness follows from
density and Arzelà–Ascoli. For self-adjointness, use Fubini’s theorem:

⟨Af, g⟩ =
∫ 1

0

Af(x)g(x) dx =

∫ 1

0

∫ 1

0

f(y) sin

(
x+ y

2

)
g(x) dydx

=

∫ 1

0

f(y)

[∫ 1

0

sin

(
x+ y

2

)
g(x) dx

]
dy

=

∫ 1

0

f(y)Ag(y) dy

= ⟨f,Ag⟩ .

(b)

Denote K(x, y) = sin((x+y)/2). By combining Tonelli’s theorem with Hölder’s
inequality, you will find that ∥A∥ = ∥K∥2. So, directly compute the L2 norm
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of K:

∥K∥22 =

∫ 1

0

∫ 1

0

sin2
(
x+ y

2

)
dxdy

=

∫ 1

0

∫ 1

0

[
1− cos(x+ y)

2

]
dxdy

=
1

2
− 1

2

∫ 1

0

∫ 1

0

cos(x+ y) dxdy

=
1

2
− 1

2

∫ 1

0

[sin(1 + y)− sin(y)] dy

=
1

2
− 1

2
[2 cos(1)− cos(2)− 1]

= 1− cos(1)− cos(2)

2
< 1.

Thus, ∥A∥ < 1.

(c)

From ST(sa), we know that inf∥f∥2=1 ⟨Af, f⟩ is the smallest spectral value of
A, and since A is also compact, this spectral value will be an eigenvalue so long
as it is nonzero. Thus, it suffices to show that there exists f ∈ L2(I) such that
∥f∥ = 1 and ⟨Af, f⟩ < 0. If f is real-valued, then

⟨Af, f⟩ =
∫ 1

0

f(x)

∫ 1

0

f(y) sin

(
x+ y

2

)
dydx.

To make this integral negative, take f(x) = 12

(
1

2
− x

)
(shoutout to Jeffrey

Cheng for this example). One can directly compute that ∥f∥2 = 1 and ⟨Af, f⟩ <
0.

August 2016

Problem 1

Same as January 2020, problem 3
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Problem 2

(a)

A W -weak open set around 0 is a union of sets of the form

n⋂
i=1

w−1
i (Bεi(0))

for εi > 0 and wi ∈W .

(b)

L−1(B1(0)) is open in W and nonempty since it contains 0, so it must contain
a W -open set around 0. That is, it contains a set of the form described in part
(a). Now, if w1(x) = . . . = wn(x) = 0, then x ∈

⋂n
i=1 w

−1
i (Bε·εi(0)) for all

ε > 0, meaning x ∈ ε · L−1(B1(0)) = L−1(Bε(0)). By sending ε → 0, we see
that Lx = 0 as well, so L is a linear combination of the wi by the hint. This
immediately tells us L ∈W .

(c)

Notice that the collection of evaluation maps are a vector space of linear func-
tionals that separate points ofX∗ and generate the weak-* topology onX∗ (that
is, the weak-* topology on X∗ is the smallest topology on which all evaluation
maps are continuous). By part (b), all weak-* continuous linear functionals on
X∗ are evaluation maps.

Problem 3

(a)

Suppose φj → φ in D, meaning there exists K ⊆⊆ Ω such that suppφj ⊆ K
for all j, and for all fixed n ∈ N, ∥φj − φ∥n,∞,Ω → 0. We claim Tφj → Tφ in

D(−1, 1). First, notice that suppTφj ⊆ π1(K), which is compact since π1 is
continuous and K is compact. Likewise, we have

∥∥∥(Tφj)
(n) − (Tφ)(n)

∥∥∥
∞

= sup
x∈(−1,1)

∣∣∣∣∣ ∂n∂xnφj(x, 0)−
∂n

∂xn
φ(x, 0)

∣∣∣∣∣
≤ ∥φj − φ∥n,∞,Ω

→ 0.

Since this holds for every derivative, we have ∥Tφj − Tφ∥n,∞,Ω → 0.
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(c)

For φ ∈ D(Ω), we have

⟨T ∗(δ0), φ⟩ = ⟨δ0, Tφ⟩ = ⟨δ0, φ(·, 0)⟩ = φ(0, 0),

meaning T ∗(δ0) = δ(0,0).

Likewise,

⟨T ∗(δ′0), φ⟩ = −⟨δ0, (Tφ)′⟩ = −
∂φ

∂x
(0, 0),

and so T ∗(δ′0) = −∂xδ(0,0).

January 2016

Problem 1

(a)

Since T is positive, it is also monotone in the sense that if f ≤ g pointwise on
A, then Tf ≤ Tg pointwise on B. In particular, every f ∈ C(A) is bounded
since A is compact, i.e., |f | ≤ ∥f∥L∞(A) on A. Since ∥f∥L∞(A) can be thought

of as a continuous (constant) function on A, this means

∥Tf∥L∞(B) ≤
∥∥∥T (∥f∥L∞(A))

∥∥∥
L∞(B)

≤ ∥f∥L∞(A) ∥T (1)∥L∞(B) ,

which establishes ∥T∥ ≤ ∥T (1)∥L∞(B) and the boundedness of T . On the other

hand, ∥1∥L∞(A) = 1, and so

∥T∥ = sup
∥f∥L∞(A)=1

∥Tf∥L∞(B) ≥ ∥T (1)∥L∞(B) ,

establishing equality.

(b)

For any n ≥ m, Tn − Tm ≥ 0, meaning

∥Tn − Tm∥ = ∥Tn(1)− Tm(1)∥L∞(B) .

Thus, {Tn}∞n=1 is Cauchy if and only if {Tn(1)}∞n=1 is Cauchy in C(B). However,
since C(B) (and, consequently, the space of all bounded linear operators from
C(A) to C(B)) are Banach spaces, this means {Tn}∞n=1 converges if and only if
{Tn(1)}∞n=1 converges.
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Problem 2

(a)

State the definition, and uniform boundedness comes from applying PUB to the
evaluation maps Exn .

(b)

The weak topology on X is the smallest topology on which every f ∈ X∗ is
continuous. A base for this topology at 0 is the same one described on August
2016, problem 2(a).

(c)

Clearly, the x we need is obtained by taking some kind of limit of {xn}∞n=1.
Since this sequence is bounded and H is separable and reflexive (remember that
all Hilbert spaces are reflexive), Banach-Alaoglu gives us a weakly convergent
subsequence {xnk

}∞k=1. Let x denote the weak limit of this subsequence.

We claim Tx = f . Indeed, since T is bounded, Txnk
⇀ Tx, but we are also

told that Txnk
= fnk

⇀ f . Since weak limits are unique, we must have Tx = f .

Problem 3

(a)

=⇒ Suppose x ∈ M⊥. The density of M means there exists a sequence
{xn}∞n=1 in M converging to x, but this means ∥x∥2 = lim

n→∞
⟨xn, x⟩ = 0, so

M⊥ = {0}.

⇐= (span(M))⊥ ⊆ M⊥ = {0} since ⊥ reverses set inclusions. In particu-
lar, (span(M))⊥ = {0}, so

span(M) = ((span(M))⊥)⊥ = {0}⊥ = H.

(remember that if Y is a closed subspace, then (Y ⊥)⊥ = Y . Generally, (Y ⊥)⊥ ⊇
Y ).

(b)

Same as January 2023, problem 2(b).

August 2015

Problem 1

In a finite-dimensional space, all norms are equivalent, so Y is isomorphic and
homeomorphic to Fd. This space is complete since F is a complete field, so Y
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is also complete as a normed linear space, and therefore closed when thought of
as a subspace of X.

Suppose Y = span{y1, . . . , yd}. Since span{y1, . . . , yi−1, yi+1, . . . , yd} is finite-
dimensional and therefore closed for i = 1, . . . , d, Mazur’s first separation lemma
gives some fi ∈ X∗ such that fi(yi) = 1 while fi(yj) = 0 for i ̸= j. From here,
set Px = f1(x)y1 + . . .+ fd(x)yd. Then, T is continuous and linear since all the
fi are continuous and linear, and P fixes all elements in Y .

On the other hand, if Y = span{y0}, Hahn-Banach gives some f ∈ X∗ such
that f(y0) = 1. From here, define P : X → Y as Px = f(x)y0. Then, P is
continuous and linear since f is continuous and linear, and P (λy0) = λy0.

Problem 2

Same as January 2020, problem 1(b) and 1(c).

Problem 3

(a)

Let u ∈ Lp and estimate

∥Au∥pp =

∫ b

a

∣∣∣∣∫ t

a

v(s)u(s) ds

∣∣∣∣p dt
≤
∫ b

a

(∫ t

a

|v(s)u(s)| ds
)p

dt

≤
∫ b

a

∥v∥pq ∥u∥
p
p dt Hölder’s inequality

= (b− a) ∥v∥pq ∥u∥
p
p .

In particular, ∥A∥ ≤ (b − a)1/p ∥v∥q. This shows A maps Lp into Lp and is
continuous.

(b)

First, let’s assume we are working over C(Ω) only so we can use Arzelà–Ascoli.
Suppose {un}∞n=1 is bounded in C(Ω) under the L∞ norm. Then,

∥Aun∥∞ = sup
t∈Ω

∣∣∣∣∫ t

a

v(s)u(s) ds

∣∣∣∣ ≤ ∫ b

a

|v(s)u(s)| ds ≤ (b− a) ∥v∥∞ sup
n∈N

∥un∥∞ <∞,

giving us uniform boundedness. For equicontinuity, notice that if a ≤ t1 < t2 ≤
b, then

|Aun(t1)−Aun(t2)| =
∣∣∣∣∫ t2

t1

v(s)un(s) ds

∣∣∣∣ ≤ (t2 − t1) ∥v∥∞ sup
n∈N

∥un∥∞ .
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In particular, if |t1 − t2| is small, then |Aun(t1)−Aun(t2)| is small for any n.
By Arzelà–Ascoli, {Aun}∞n=1 has a convergent subsequence, so A is compact in
the C(Ω) case. Finally, by using the density of Lp and Lq functions in C(Ω),
this can be extended to our original case, establishing the compactness of A.

Problem 4

(a)

Recall that positive operators on complex Hilbert spaces are self-adjoint, so for
all x, y ∈ X, ⟨x,Ay⟩ = ⟨Ax, y⟩. In particular, ⟨x,Ay⟩ = 0 for all y if and only if
x ∈ [Range(A)]⊥, and ⟨Ax, y⟩ = 0 for all y if and only if x ∈ Null(A).

(b)

All spectral values of positive operators are nonnegative by ST(sa), so I + tA =
t(A−(−t−1A)) = tA−t−1 is bijective since −t−1 < 0 and therefore not a spectral
value.

(c)

First, suppose x ∈ Null(A). Since (I + tA)x = x for all t > 0, we also have
(I + tA)−1x = x. Thus, limt→∞(I + tA)−1x→ x.

By part (a), we have

[Null(A)]⊥ = ([Range(A)]⊥)⊥ = Range(A)

(the second equality is exercise 3.15(a) of Arbogast and is not hard to prove).
We will first show that limt→∞(I + tA)−1 = 0 on Range(A). Now, since A
commutes with I and tA, it also commutes with I+ tA and therefore commutes
with (I + tA)−1. Thus,

(I + tA)−1A =
1

t
(At)(I + tA)−1

If s is a nonzero real number, then

ts

1 + ts
=

1 + ts− 1

1 + ts
= 1− 1

1 + ts
.

With this as inspiration, it is not hard to check that (tA)(I+tA) = I−(I+tA)−1.
Hence,

1

t
(At)(I + tA)−1 =

1

t
[I − (I + tA)−1].

From here, we have for any x ∈ X∥∥(I + tA)−1Ax
∥∥ =

1

t

∥∥(I − (I + tA)−1)x
∥∥

≤ 1

t

[
∥x∥+

∥∥(I + tA)−1x
∥∥] .
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From here, we can estimate the norm on the right. Letting y = (I+ tA)−1x, we
have

⟨x, y⟩ = ⟨y + tAy, y⟩ = ∥y∥2 + t ⟨Ay, y⟩ ≥ ∥y∥2

since A is positive, meaning

∥y∥2 ≤ ⟨x, y⟩ ≤ ∥x∥ ∥y∥

By Cauchy-Schwartz. Thus, ∥y∥ ≤ ∥x∥, which implies∥∥(I + tA)−1Ax
∥∥ ≤ 2 ∥x∥

t
.

In particular, this goes to 0 as t → ∞, meaning limt→∞(I + tA)−1 = 0 on
Range(A). By continuity, this is also true over [Null(A)]⊥. To conclude, just
use the fact that X = Null(A)⊕ [Null(A)]⊥ to find that the limit is PNull(A).

Possible Prelim Problems

The following are results from the book whose proofs have not been asked on a
previous prelim, but I believe have a decent chance of going on a prelim (or, at
least parts of the proof).

Proposition 2.11

Statement: Let X be a finite-dimensional vector space. Then, all norms on
X are equivalent, and a subset of X is compact if and only if it is closed and
bounded.

Proof. Taking two arbitrary norms on X and trying to show they are equivalent
is a trap. Instead, look to define a “nice” norm on X, then show every norm is
equivalent to this nice one. Here’s how to do it:

Let e1, . . . , en denote a basis of X. From here, define T : X → Fn by

Tx = T (x1e1 + . . . xnen) = (x1, . . . , xn).

From here, define this “nice” norm on X:

∥x∥1 = ∥Tx∥ℓ1 .

It is easy to check the following important facts:

• T is linear and a bijection

• ∥·∥1 is a norm on X

• T is an isometry with respect to the ℓ1 norm on Fn and the ∥·∥1 norm on
X
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• T−1 is also an isometry

• T is a homeomorphism

From here, let S1
1 denote the closed unit ball in X under the norm ∥·∥1. T sends

this set to the closed unit ball in Fn, which is compact by Heine-Borel. Thus,
S1
1 is compact.

Next, let ∥·∥ be any arbitrary norm over X. The first inequality is easy:

∥x∥ =

∥∥∥∥∥
n∑

i=1

xiei

∥∥∥∥∥ ≤
n∑

i=1

|xi| · ∥ei∥ ≤ C ∥x∥1 ,

where C = max1≤i≤n ∥ei∥ (note that C is positive, for otherwise ∥·∥ would be
identically zero). This calculation also reveals that every open ball under ∥·∥1
is contained in an open ball under ∥·∥ (in particular, a ball of radius r under
∥·∥1 is contained in a ball of radius C−1r under ∥·∥). This tells us that the
topology of (X, ∥·∥) is contained in the topology of (X, ∥·∥1). In particular,
S1
1 is compact under the topology of (X, ∥·∥). Now, defining a = infx∈S1

1
∥x∥,

we must have that a > 0 since the continuity of ∥·∥ and the compactness of S1
1

means a minimum is attained, and this minimum must have nonzero norm since
it lies on the unit sphere. This gives us our final estimate:

a ∥x∥1 ≤
∥∥∥∥ x

∥x∥1

∥∥∥∥ ∥x∥1 = ∥x∥

for all x ̸= 0 since
x

∥x∥1
∈ S1

1 . Thus, ∥x∥1 ≤ a−1 ∥x∥ for all x ∈ X. QED

Theorem 2.28 (Extending Hahn-Banach from R to C)
Statement: Hahn-Banach works if C is the field, assuming we know it works
over R.

Proof. Start with a subspace Y ⊆ X and a linear functional f over Y (with C
as the field!) such that |f | ≤ p on Y for some seminorm p. Then, break f into
its real and imaginary parts, which we will denote g and h respectively. Notice
that

g(ix) + ih(ix) = f(ix) = if(x) = ig(x)− h(x).

Compare the real parts to conclude that g(ix) = −h(x). Thus, f(x) = g(x) −
ig(ix) (get used to this “comparing real parts” trick – we will use it multiple
times in this proof). Now, g can be thought of as a linear functional on Y but
with R as the field, since for λ ∈ R,

f(λx) = g(λx) + ih(λx),

λf(x) = λg(x) + iλh(x).
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Once again, we recognize that the top and bottom lines are equal, and comparing
real parts tells us g(λx) = λg(x). Also, |g| ≤ |f | ≤ p on Y . Thus, Hahn-Banach
over R lets us extend g to some linear functional G over X (remember that G
is only real-linear and real-valued) such that |G| ≤ p on X. Now, define the
complex -valued functional F (x) = G(x)− iG(ix) over X. Clearly, F extends f .
For linearity, we really only need to check that i factors out:

F (ix) = G(ix)− iG(−x) = iG(x) +G(ix) = i[G(x)− iG(ix)] = iF (x).

(remark: we do not know if G(ix) = iG(x). Regardless, things still work out
since we only need that F is complex-linear). Finally, we need to check that
|F | ≤ p on X.

Trick: Use polar decomposition. Fix x ∈ X and write F (x) = reiθ. Then,

|F (x)| = r = e−iθF (x) = F (e−iθx) = G(e−iθx)− iG(e−iθx).

But now, the right hand side must be a nonnegative real number, so iG(e−iθx) =
0 and G(e−iθx) ≥ 0. This tells us

|F (x)| =
∣∣G(e−iθx)

∣∣ ≤ p(e−iθx) =
∣∣e−iθ

∣∣ p(x) = p(x).

QED

Important thing to note: this general formulation of Hahn-Banach does not
require our linear functional to be bounded in operator norm. However, most
traditional applications use it on bounded linear functionals.

Theorem 2.45 (Closed Graph Theorem)

Statement: If X and Y are Banach spaces and T : X → Y linear, then T is
continuous if and only if it is closed.

Proof. =⇒ This can be generalized into a broader statement on Hausdorff
spaces, but let’s not bother. Let (xn, Txn) be a sequence in Graph(T ) converg-
ing to some (x, y) ∈ X×Y . Then, xn → x and Txn → y. But, by the continuity
of T , Txn → Tx, and so Tx = y, making (x, y) = (x, Tx) ∈ Graph(T ).

⇐= Suppose T is closed. Then, Graph(T ) is a closed subspace of X × Y ,
and therefore a Banach space in its own right. In particular, the norm on
Graph(T ) is simply ∥(x, Tx)∥ := ∥x∥X + ∥Tx∥Y .

Trick: Look at the projections π1 : X × Y → X and π2 : Graph(T ) → X × Y .
We will leverage the fact that these are continuous. In particular, their restric-
tions to Graph(T ) are continuous, and clearly π1 is a bijection when restricted
to Graph(T ). Thus, its inverse π−1

1 : X → Graph(T ) given by π−1(x) = (x, Tx)
is continuous by OMT. But now, T = π2 ◦ π−1

1 , which is continuous being a
composition of continuous functions. QED
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Theorem 2.47 (Uniform Boundedness Principle)

Statement (as in the book): X Banach, Y NLS, {Tα}α∈I a collection of bounded
linear operators from X to Y . Either this collection is uniformly bounded, or
unbounded at a point.

Proof. Trick: Let φα := ∥Tα∥ for all α (notice φα is continuous from X to
[0,∞)). Then, define the open sets

Vn =
⋃
α∈I

φ−1
α ((n,∞))

for all n ∈ N. There are now two cases to consider. First, suppose there exists
N such that VN is not dense in X. Then, there exists an open ball Br(x) that
does not intersect VN . In particular, for all z ∈ Br(x) and α ∈ I, ∥Tαz∥ ≤ N .
It follows that for all α,

∥Tα∥ = sup
∥y∥≤1

∥Tαy∥ =
2

r
sup

∥y∥≤1

∥∥∥Tα (ry
2

+ x
)∥∥∥+ ∥Tαx∥ ≤ 4N

r

since
ry

2
+ x ∈ Br(x) whenever ∥y∥ ≤ 1. Hence, this case implies we have uni-

form boundedness.

For the other case, suppose all the Vn are dense in X. By Baire Category The-
orem,

⋂∞
n=1 Vn is dense in X, and in particular, nonempty. Let x ∈

⋂∞
n=1 Vn.

Then, for all n ∈ N, there exists αn ∈ I such that ∥Tαnx∥ > n, meaning the
collection {Tα}α∈I is unbounded at x. QED

Lemma 2.49 (Separation from a Closed Subspace)

Statement: X and NLS, Y a closed subspace, and Z a subspace containing Y .
If Z ̸= Y and θ ∈ (0, 1), there exists z ∈ Z such that ∥z∥ = 1 and dist(z, Y ) ≥ θ.

Proof. Fix z0 ∈ Z \ Y and put d = dist(z, Y ). Since Y is closed, d > 0. Thus,

there exists y0 ∈ Y such that ∥z0 − y0∥ <
d

θ
.

Trick: Let z :=
z0 − y0

∥z0 − y0∥
(clearly, z ∈ Z and ∥z∥ = 1). Then, for all y ∈ Y ,

∥z − y∥ =
1

∥z0 − y0∥
· ∥z0 − y0 − ∥z0 − y0∥ y∥ >

θ

d
· d = θ

since y0 − ∥z0 − y0∥ y is an element of Y , so its distance to z0 must be greater
than d. QED
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Corollary 2.50 (No Infinite-Dimensional Heine-Borel)

Statement: The closed unit ball in an infinite-dimensional NLS is not compact.

Proof. Let X be infinite-dimensional and B the closed unit ball in X. Since we
are working over an NLS, it is enough to produce a sequence in B with no con-
vergent subsequence (i.e., we need all the points in our sequence to be far away
from each other). This is where we deploy lemma 2.49. Since X is infinite-
dimensional, we have a linearly independent sequence {yn}∞n=1 in B. Define
Yn := span(y1, . . . , yn) for all n. Then, use the following induction argument:

Since Y1 is a closed subspace strictly contained in B, the previous lemma gives

us some x1 ∈ B \ Y1 such that dist(z, Y1) ≥
1

2
. Now, let Y2 = span{Y1, x1}.

Once again, this is a closed subspace strictly contained in B, so we can similarly

find x2 ∈ B \ Y2 such that dist(z, Y2) ≥
1

2
. Proceed inductively, giving us a

sequence of points in the ball that are all
1

2
away from each other. In particular,

there is no convergent subsequence, so no compactness. QED

NB: The proofs of lemma 2.49 and corollary 2.50 actually showed up on the
January 2026 prelim!

Theorem 2.62 (Banach-Saks)

Statement: X an NLS and {xn}∞n=1 a sequence converging weakly to x. For

every n ≥ 1, there exist constants α
(n)
j ≥ 0 with

∑n
j=1 α

(n)
j = 1 such that

yn :=
∑n

j=1 α
(n)
j → x strongly as n→ ∞.

Proof. The statement seems daunting to prove, but it’s really equivalent to
saying that x is contained in the closure of the convex hull of {xn}∞n=1. With
this reframing, we can use the previously built results that stemmed from Hahn-
Banach. Let H denote the convex hull of {xn}∞n=1 and suppose for the sake of
contradiction that x is not in H. Then, H is closed and convex while {x} is
compact, convex, and disjoint from H, so by the separating hyperplane theorem
(specifically, part (c) of this theorem), there exists some f ∈ X∗ and γ ∈ R such
that ℜf(x) < γ < f(y) for all y ∈ H. In particular, ℜf(x) < γ < ℜf(xn) for
all n, but this is a contradiction since we must have f(xn) → f(x). QED

Lemma 3.2 (Cauchy-Schwarz Inequality)

Statement: H a Hilbert space, x, y ∈ H. Then, |⟨x, y⟩| ≤ ∥x∥ ∥y∥.
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Proof. This is trivial if y is zero, so assume y ̸= 0. Start by letting λ ∈ F and
investigating the norm of x− λy:

0 ≤ ∥x− λy∥2

= ∥x∥2 − λ ⟨x, y⟩ − λ ⟨y, x⟩+ |λ|2 ∥y∥2 .

Trick: Take λ =
⟨x, y⟩
∥y∥2

(the idea is to get the two middle terms to agree while

canceling out a ∥y∥2 on the last term). This gives us

0 ≤ ∥x∥2 − 2 |⟨x, y⟩|2

∥y∥2
+

|⟨x, y⟩|2

∥y∥2
= ∥x∥2 − |⟨x, y⟩|2

∥y∥2
.

Rearrange to get the desired inequality. QED

Corollary 3.9 (Orthogonal Projection =⇒ Orthogonal)

Statement: H Hilbert and M a complete linear subspace. If x ∈ H and y ∈M
is the best approximation of x in M , then x− y ⊥M .

Proof. Let 0 ̸= m ∈M . We have

∥x− y∥2 ≤ ∥(x− y)− λm)∥2

= ∥x− y∥2 − λ ⟨x− y,m⟩ − λ ⟨m,x− y⟩+ |λ|2 ∥m∥2

=⇒ 0 ≤ −λ ⟨x− y,m⟩ − λ ⟨m,x− y⟩+ |λ|2 ∥m∥2 .

Trick: Take λ =
⟨x− y,m⟩
∥m∥2

(same idea as the last proof!). Then,

0 ≤ −|⟨x− y⟩|2

∥m∥2
,

which is only possible if ⟨x− y,m⟩ = 0. QED

Lemma 3.28 (Orthonormal Bases are all you Need)

Statement: If {eα} is an ON basis of H and xn, x ∈ H, then xn ⇀ x if and only
if {xn}∞n=1 is bounded and ⟨xn, eα⟩ → ⟨x, eα⟩ for all α.

Proof. =⇒ Obvious

⇐= The second hypothesis immediately implies that ⟨xn, y⟩ → ⟨x, y⟩ for all
y ∈ Span{eα}α∈I . Let z ∈ H and ε > 0. Since {eα} is an ON basis, its span is
dense in H, so there exists y ∈ Span{uα}α∈I such that ∥z − y∥ < ε. Now,

|⟨xn − x, z⟩| = |⟨xn − x, z − y⟩|+ |⟨xn − x, y⟩| ≤ Cε+ |⟨xn − x, y⟩| → Cε,

where C := supn∈N ∥xn∥+ ∥x∥. QED

45



Lemma 4.2 and Corollary 4.3 (Resolvents in Banach Spaces)

Statement: X a Banach space, T ∈ B(X,X). Then, λ ∈ ρ(T ) if and only if Tλ
is a bijection.

Proof. =⇒ We only need to check for surjectivity. By assumption, T−1
λ :

R(Tλ) → X is bounded. Let y ∈ X. Since Tλ has a dense range, there exists
{xn}∞n=1 in X such that Tλxn → y. Then, {xn}∞n=1 is Cauchy in X, since

∥xn − xm∥ =
∥∥T−1

λ (Tλ(xn − xm))
∥∥ ≤

∥∥T−1
λ

∥∥ ∥Tλxn − Tλxm∥ → 0.

Thus, {xn}∞n=1 converges to some x ∈ X. But now, the continuity of Tλ tells us
that Tλxn → Tλx, and so y = Tλx, establishing surjectivity.

⇐= Of course, Tλ is one-to-one with a dense range (since its range is all of X).
Lastly, OMT tells us T−1

λ is bounded, so λ is in the resolvent. QED

Lemma 4.4 (Geometric Series for “Small” Operators)

Statement: X Banach, V ∈ B(X,X) with ∥V ∥ < 1. Then, I − V is invertible
with (I − V )−1 =

∑∞
n=0 V

n.

Proof. Define the partial sums SN :=
∑N

n=0 V
n. This sequence is Cauchy in

B(X,X), since if N > M , then

∥SN − SM∥ =

∥∥∥∥∥
N∑

n=M+1

V n

∥∥∥∥∥ ≤
N∑

n=M+1

∥V ∥n .

But ∥V ∥ < 1, meaning
∑∞

n=0 ∥V ∥n is a convergent geometric series. In partic-
ular, the right hand side tends to 0 as N,M → ∞, so the partial sums form
a Cauchy sequence. But B(X,X) is complete, so SN has a limit that we will
denote by S. First, notice that

SN (I − V ) = (I − V )SN = I − V N+1,

and since ∥∥V N+1
∥∥ ≤ ∥V ∥N+1 → 0,

we will have SN (I − V ) → I in operator norm. However, it is also true that
SN (I −V ) → S(I −V ), and so S(I −V ) = I. Likewise, (I −V )S = I, so I −V
is invertible with (I − V )−1 = S, as desired.

QED
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Proposition 4.16 (Compact Operators have Finite-Dimensional
Eigenspaces)

Statement: X Banach, T ∈ C(X,X). For all λ ̸= 0, N(Tλ) is finite-dimensional.

Proof. Of course, if λ is not an eigenvalue, then N(Tλ) = {0}, so we can assume
λ ∈ σp(T ). Our strategy here is to show that the closed unit ball in N(Tλ) is
compact, since this is only possible if we are in a finite-dimensional space. So,
let B = B1(0) ∩ N(Tλ), and let {xn}∞n=1 be a sequence in B. In particular,

xn = T

(
xn

λ

)
for all n. But {xn/λ}∞n=1 is a bounded sequence as well, so

{xn}∞n=1 has a convergent subsequence since T is compact; the limit of this
sequence is in B since B is closed. QED

Probably Not Prelim Material

The following are Applied I topics that have not shown up on prelims in any
form for the past 10 years. In my opinion, these are unlikely to show up on
future prelims either because they are too time-consuming or unrelated to the
core content, but ignore these at your own risk.

• Proof of OMT

• Proof of Mazur’s second separation lemma

• Proof of separating hyperplane theorem

• Proof of BAT (since it requires Tychonoff’s theorem)

• Any proof that requires Zorn’s Lemma (so, HBT for vector spaces over R
and the proof of the existence of an ON basis)

• Proof of Lp Duality Theorem (since it requires Radon-Nikodym)

• Proof of ST(c)

• Proof of Hilbert-Schmidt Theorem

• Sturm-Liouville theory

• Distributional solutions to differential equations (ODE and PDE)

• Distributional convolutions

• Leibniz rule

• Finding distributional derivatives

• Approximations to the identity
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